
Journal of Magnetic Resonance 208 (2011) 179–194
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
Spinach – A software library for simulation of spin dynamics in large spin systems

H.J. Hogben a, M. Krzystyniak b, G.T.P. Charnock b, P.J. Hore a, Ilya Kuprov b,⇑
a Physical and Theoretical Chemistry Laboratory, Chemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
b Oxford e-Research Centre, University of Oxford, 7 Keble Road, Oxford OX1 3QG, UK
a r t i c l e i n f o

Article history:
Received 1 October 2010
Revised 7 November 2010
Available online 17 November 2010

Keywords:
NMR
ESR
Simulation
Spin dynamics
Spinach
1090-7807/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.jmr.2010.11.008

⇑ Corresponding author. Fax: +44 1865 610612.
E-mail address: ilya.kuprov@oerc.ox.ac.uk (I. Kupr
a b s t r a c t

We introduce a software library incorporating our recent research into efficient simulation algorithms for
large spin systems. Liouville space simulations (including symmetry, relaxation and chemical kinetics) of
most liquid-state NMR experiments on 40+ spin systems can now be performed without effort on a desk-
top workstation. Much progress has also been made with improving the efficiency of ESR, solid state NMR
and Spin Chemistry simulations.
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1. Introduction

It is a truth universally acknowledged that a brute force solution
of the Liouville–von Neumann equation for a general system with
over 20 spins is not practically feasible because the dimension of
the matrices involved scales exponentially with the number of
spins. The magnetic resonance community (unlike our colleagues
in theoretical chemistry [1–4]) has thus far accepted this fact and
evolved in the direction of software functionality rather than effi-
ciency, taking full advantage of the emerging sparse storage [5,6],
parallelization [7], propagation [8–10], symmetry factorization
[11–16], model order reduction [17,18] and symbolic processing
[19–21] techniques, but fundamentally still using algorithms that
scale exponentially with the system size, meaning that the com-
puting power (or patience) usually runs out at around 5–10 spins.

Still, the functionality available is impressive: existing packages
can, in principle, simulate almost anything in NMR or ESR. They
may be classified broadly into two categories – the analytical and
semi-analytical tools [19–21], written mostly in Mathematica,
and the numerical codes [5,7,22–25], written in Fortran, C or Mat-
lab. Several packages are designed as function libraries
[19,21,24,25], which makes them particularly useful for explor-
atory simulations. A powerful program with a convenient graphical
user interface has recently appeared [23]. The most advanced
codes, such as SIMPSON [22] and SPINEVOLUTION [5] include dedi-
cated scripting languages that make them very flexible. That hav-
ing been said, a software package has yet to emerge that would
ll rights reserved.
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not grind to a halt with a 20-spin system – the computational scal-
ing problem remains unsolved.

The present paper gives a summary of recent research into
large-scale spin dynamics simulations – it briefly reviews a family
of algorithms [26–29] and introduces a software package (Spinach)
that aims to make spin dynamics simulations computationally effi-
cient while preserving the existing software infrastructure. We can
reasonably conclude that most liquid-state NMR experiments can
now be simulated for 40+ spins with relative ease, and much pro-
gress has been made with solid state NMR [30,31], ESR and Spin
Chemistry systems.

The primary objective of the Spinach library, which is described
in Sections 3 and 4, is to generate accurate low-dimensional matrix
representations for Liouville space operators and state vectors of
large spin systems. The resulting matrices are often orders of mag-
nitude smaller than those obtained with Kronecker products
[28,29], and may either be used directly or imported into any of
the existing software packages – these matrices are an alternative
adjoint representation of the suð2NÞ algebra of spin [26], and there-
fore nothing changes in any of the usual simulation algorithms ex-
cept for the matrix dimension.
2. Efficient spin dynamics simulation algorithms

In common with much of Computational Quantum Theory, the
fundamental objective of an ‘‘efficient’’ spin dynamics simulation
algorithm is to reduce the problem dimension to a minimum, to
bring as many simulation stages as possible down from exponen-
tial into polynomial scaling and to provide estimates of the accu-
racy of any approximations involved. The methods reviewed
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below serve to accomplish these goals – some exactly, some
approximately and some by recasting existing methods and theo-
ries into a more CPU- and memory-friendly form.

2.1. Basis indexing

By far the most versatile complete basis set for spin dynamics
simulations is direct products of irreducible spherical tensors
(ISTs) [26,32–35]. If the state space of each individual spin is in-
dexed by enumerating all operators in its (necessarily finite) state
space, e.g.

T̂ lm ()
l

m

� �
ð1Þ

where T̂ lm is an IST, the matrix representations of basis operators for
a multi-spin system may be avoided entirely because the direct
product structure of any basis operator is completely determined
by the index list:

T̂ l1m1
� T̂ l2m2

� � � � � T̂ lnmn ()
l1 l2 . . . ln

m1 m2 . . . mn

� �
ð2Þ

which may be further transformed to require only a single integer
per spin:

T̂ l1m1 � T̂ l2m2 ����� T̂ lnmn () l2
1þ l1�m1 l2

2þ l2�m2 . . . l2nþ ln�mn

� �
ð3Þ

where the ISTs are now indexed by ascending rank l and within
ranks by ascending projection number m – the position of the oper-
ator within this flattened list is given by l2 + l �m. Such a represen-
tation has the benefit of requiring exponentially less memory than
the explicit matrix representation – just N integers instead of at
least O(2N) complex double-precision floating point numbers. The
algebraic properties of ISTs are well researched [34,36–44], and
many fundamental operations may be carried out directly in the in-
dexed notation by remapping the indices. For multiplication of suit-
ably normalized single-spin operators [32,35]:

T̂ l1m1 T̂ l2m2 ¼
Xl1þl2

L¼jl1�l2 j
CLM

l1m1 l2m2
T̂LM; M ¼ m1 þm2 ð4Þ

where CLM
l1m1 l2m2

are related to Clebsch–Gordan coefficients. The
structure coefficients cijk of the su(2N) Lie algebra of an N-spin
system

�
N

n¼1
T̂

lðiÞn mðiÞn

� �
�
N

n¼1
T̂

lðjÞn mðjÞn

� �
¼
X

k

cijk �
N

n¼1
T̂

lðkÞn mðkÞn

� �
ð5Þ

may also be computed without resort to matrix representations:

cijk ¼ Tr �
N

n¼1
T̂

lðiÞn mðiÞn

� �
�
N

n¼1
T̂

lðjÞn mðjÞn

� �
�
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� �y" #
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� �� �

¼
YN

n¼1

Tr T̂
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� �
¼
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f ðnÞijk ð6Þ

in terms of the structure coefficients fijk of suð2Þ algebras of individ-
ual spins, which are known and tabulated. In Eq. (6), the ijk indices
run across the basis operators of su(2N), chosen to be direct prod-
ucts of single-spin ISTs, and the n index enumerates the spins in
the system. Evaluation of a single structure coefficient using Eq.
(6) is exponentially faster than the calculation using explicit matrix
representations: N multiplications instead of at least O(8N).
2.2. Incomplete basis sets

The CPU time savings noted in the previous section do not cir-
cumvent the fact that there are exponentially many states in the
complete basis set of su(2N) and the structure coefficient array cijk

has exponential dimensions. This is a fundamental fact of nature
for many-body systems, and any way around it must involve phys-
ical approximations.

The basis set need not be complete [26,28,29], but it must be
closed with respect to temporal propagation – if a restricted space
K is chosen for simulation, the density operator must not ‘‘leak’’
outside K:

q̂ 2 K ) e�i ^̂Ltq̂ 2 K 8t 2 ½0; tmax� ð7Þ

at least for the duration of the simulation, tmax. Formally exact
examples of K being considerably smaller than the full state space
are well known and include systems with conservation laws [45],
symmetry [11,14,16] and non-interacting subsystems [26]. Approx-
imate restricted basis sets would exclude states that can in principle
get populated, but are unlikely to be on the time scale of the simu-
lation [28,29].

From the algebraic point of view, for a given effective Liouvillian

superoperator ^̂L, the set G of all time propagators is a Lie group
[46]:

e�i ^̂Lt1 ; e�i ^̂Lt2 2 G ) e�i ^̂Lt1 e�i ^̂Lt2 ¼ e�i^̂Lðt1þt2Þ 2 G

8e�i ^̂Lt1 2 G 9ei ^̂Lt1 2 G s:t: e�i ^̂Lt1 ei ^̂Lt1 ¼ ^̂E ð8Þ

where t1 and t2 are arbitrary real numbers and ^̂E is the identity
superoperator. The system trajectory under the action of this
group

Gðq̂0Þ ¼ fe�i ^̂Ltq̂0; t 2 ½0; tmax�g ð9Þ

is a group orbit [28,29] of the initial state operator q̂0. The minimal
set of operators spanning Gðq̂0Þ is the minimal basis required to de-
scribe the spin system evolution exactly. Reduced state space tech-
niques should therefore be aimed at finding or approximating this
minimal basis.

2.3. State space restriction using interaction topology

Our somewhat naive initial formulation of the restricted state
space (RSS) approximation [29] was essentially using heuristics –
it is often possible to decide a priori which states are unlikely to
contribute to the spin system evolution. One could take advantage
of three practical observations here:

1. All time-domain experiments in magnetic resonance have finite
(often short) signal decay time – the system might not have
enough time to evolve into certain states.

2. All spin interactions are at most binary, meaning that, even in
densely coupled solids, the magnetization transport network
in Liouville space is very sparse – access to remote areas of
the state space could be slow.

3. The initial state and the detection state in all magnetic reso-
nance experiments are simple collections of single-spin or
two-spin (in exotic experiments such as PHIP [47] and CIDNP
[48–50]) orders – the magnetization that strays too far from
these narrow regions of the vast state space might never find
its way back.

On these empirical grounds we could conjecture that a large en-
ough spin system might not have the time or the opportunity to
get into certain states. This is schematically illustrated in the



Fig. 1. Spinach code architecture. The kernel is a highly abstract Lie algebra and quantum theory engine, providing the core simulation infrastructure that does not depend on
the exact nature of the spin system. The user-land contains wrappers, translators, building blocks and case-specific functions interfacing the kernel to the physical and
methodological reality.
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Graphical Abstract: clearly, the restricted state-space approxima-
tion should be particularly relevant for the very sparsely connected
spin systems encountered in liquid-state NMR.

The validity and accuracy of these assumptions depend on the
details of each individual spin system and experiment. While RSS
has demonstrated impressive performance with liquid-state NMR
[28,29] and Spin Chemistry [26] simulations, the situation with so-
lid state NMR in particular is more complicated [30,31]. In practice,
accurate results are expected for solid state NMR in the following
situations:

A. In static powders, where the lines of each individual crystal-
lite may be sharp, but the powder average lines are broad.
An inverse Fourier transform of the powder spectrum would
decay very quickly – that is, irrespective of the actual
dynamics in specific crystallites, the dynamics seen by the
coil is short-time. For short-time dynamics, as per Observa-
tion 1 above, state space restriction is a good approximation.

B. In spinning powders, where the dipolar coupling density and
strength are significantly reduced by magic angle spinning
[51]. For sparse networks of small-amplitude couplings, as
per Observations 2 and 3 above, restricted state space is a
good approximation.

The observations above suggest that the state space should be
restricted to low-order spin states connecting nearby (in the cou-
pling sense) spins. This is quite easy to accomplish using graph the-
ory and this was the method proposed in our initial paper on the
subject [29]. The truncation level and the proximity tolerance are
variable parameters left to user discretion – in the limit of no trun-
cation the simulation is exact.
2.4. State space restriction using Krylov subspace analysis

An alternative formulation of the restricted state space formal-
ism [17,18,26,28] is based on rigorous algebraic analysis of the
subspaces that can or cannot be populated during spin-system
evolution. The subject is quite rich, but one very general statement
stands out:

Irrespective of the size and complexity of the spin system, the min-
imum matrix dimension required to simulate accurately any NMR,
EPR or Spin Chemistry experiment is less than or equal to the
number of digitization points in the free induction decay or its
equivalent.

The proof is quite simple and may be formulated in two alterna-
tive ways:

A. From the digital signal-processing perspective, an n-point
time-domain signal can only encode n distinct frequencies
and can therefore be generated as a solution to a system of
n linear differential equations. If the spectrum is not
crowded, even fewer equations may be necessary.

B. From the algebraic perspective, in finite-step simulations the
system trajectory under a given Liouvillian (Eq. (9)) up to the
nth point is contained in the Krylov subspace Kn generated

by the action of the propagator ^̂P on the initial state vector
q̂0:

n o

Kn ¼ span q̂0;

^̂Pq̂0;
^̂P2q̂0; . . . ;

^̂Pn�1q̂0 ;
^̂P ¼ e�i^̂LDt ð10Þ
where Dt is the time step. Because there are n vectors in that
list, the dimension of the space they span cannot exceed n,
and is likely to be smaller than that. The same argument ap-
plies in the case where the Liouvillian is time-dependent, be-
cause the time dependence does not affect the number of
vectors in the trajectory in Eq. (10).

The generality of the statement above is slightly shocking – it
appears that the consequences of all spin dynamics simulations
being finite-step and finite-time have so far been underestimated.
Note that the proofs are algebraic and do not touch upon the
‘‘physical meaning’’ of the minimal system of equations. It is also
true that these are pure existence proofs – they do not bring us
any closer to actually finding the minimal basis: the first proof is
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not constructive and the second one would require the exact sim-
ulation to be carried out before the basis of the minimal space con-
taining Kn could be obtained.

In the spin dynamics context, the question of finding or approx-
imating Kn has received attention as early as 1980 – Moro and
Freed [17,18,52] investigated the application of the Lanczos algo-
rithm, which approximates the space spanned by matrix exponen-
tials with the space spanned by matrix powers (which occur in the
Taylor expansion of the exponential):

span q̂0;
^̂Pq̂0;

^̂P2q̂0; . . . ;
^̂Pn�1q̂0

n o
� span q̂0;

^̂Lq̂0;
^̂L2q̂0; . . . ;

^̂Lmq̂0

n o
ð11Þ

The resulting algorithm proved very useful in highly general formu-
lations of spin relaxation theory based on the stochastic Liouville
equation [52], which often suffer from astronomical matrix dimen-
sions. Essentially, the Lanczos algorithm identifies the subspace in
which the spin system is confined (to a user-specified accuracy)
and projects the entire simulation into that subspace.

For large reduced state spaces (m > 500) the straight Lanczos
pruning can be expensive, and we recently proposed a large-scale
implementation (called zero track elimination, ZTE [28]), which
effectively reverses the logic outlined above – it identifies the vec-
tors that do not appear in the Krylov subspace during the spin-sys-
tem evolution and deletes them from the basis.

2.5. Krylov propagation

It is well known that the product of a matrix exponential and a

vector, such as expð�i^̂LDtÞq̂ can be computed much faster than the

matrix exponential expð�i^̂LDtÞ itself [53], particularly if the matrix
^̂L is sparse and Dt is small. All available avenues towards

expð�i^̂LDtÞ involve matrix–matrix multiplications [54,55] and

therefore have an O(n3) scaling with the matrix dimension, but

expð�i^̂LDtÞq̂ can be computed at O(n2) cost by re-ordering the
multiplication operations in the corresponding Taylor expansion:

exp �i^̂LDt
� �

q̂ ¼
X1
n¼0

ð�iDtÞn

n!
^̂Ln

" #
q̂

¼
X1
n¼0

ð�iDtÞn

n!
^̂L ^̂L . . .

^̂Lq̂
� �� �� �� �

ð12Þ

so that only matrix–vector multiplications need to be performed.
This approach is particularly well suited for propagation under
time-dependent Liouvillians, where previously computed matrix
exponentials cannot be re-used, and in low-memory situations, be-
cause no extra matrices need to be stored.

Although Eq. (12) is a good illustration, it is not the optimal way

of computing expð�i^̂LDtÞq̂. Much better accuracy and convergence
rate are achieved if a generalized polynomial approximation to the
exponential function is used instead [53]. All degree n polynomial

approximations to expð�i^̂LDtÞq̂ are elements of the Krylov sub-
space Kn defined as:

Kn ¼ span q̂; ð�i^̂LDtÞq̂; ð�i^̂LDtÞ2q̂; . . . ; ð�i^̂LDtÞnq̂
n o

ð13Þ

and the optimal way of computing expð�i^̂LDtÞq̂ for a given degree n

therefore is to project both ^̂L and q̂ into the basis of Kn, compute the

product expð�i^̂LDtÞq̂ there using standard matrix exponentiation
techniques [54,55] and project the result back into the original

space. This is known as the Krylov method; for well scaled ^̂LDt matri-
ces n � 30 is generally sufficient [53]. Because of its small memory
footprint and O(n2) scaling, the Krylov method enables direct time
propagation in simulations with state space dimensions exceeding
106 [28].

2.6. Sparse array clean-up

An issue that is separate from matrix dimension is matrix spar-
sity. The use of sparse algebra in magnetic resonance simulations is
well documented [5,6] and carries great advantages, because the
binary nature of spin–spin couplings makes Hamiltonian and Liou-
villian matrices very sparse. Unfortunately, the same cannot be
said about powers of those matrices – if a Hamiltonian Ĥ is sparse,
its density increases quickly when powers are taken; Ĥ�1 is almost
always dense. This means that exponential propagators, if evalu-
ated directly using Taylor, Chebyshev [10] or Padé [54,55] approx-
imations, would also be dense – a serious problem for matrix
dimensions in excess of 103 and a show-stopper for dimensions
above 104 because of memory overflow.

This situation can be avoided if we restrict ourselves to only

ever compute powers of i^̂LDt where Dt < k^̂Lk�1. This is a reasonable
constraint to impose – it is the definition of the Larmor time step,
which is required anyway to avoid signal aliasing. The eigenvalues

of ði^̂LDtÞn then drop off exponentially with n and many new non-
zeros appearing after matrix multiplication are so small as to be
inconsequential and can be dropped from the index, largely pre-
serving (or even improving) matrix sparsity:

jLijj < e) Lij ! 0 ð14Þ

where e is a user-supplied tolerance. A reasonable value for e is a
couple of orders of magnitude lower than the reciprocal experiment
duration (Spinach defaults to e = 10�7 rad/s).

The clean-up procedure is applied every time a matrix is gener-
ated or multiplied in Spinach. The relatively small overhead of
examining the non-zero index for small elements is compensated
by the significant reduction of memory footprint and acceleration
of matrix multiplication operations. It should be noted that sparse
array clean-up is only effective for matrices that have been scaled
inside the unit norm as described above – a propagator that takes
the system forward by an hour would of course be dense.

2.7. SO(3) rotations

It is a general group-theoretical result that, in a rigid spin sys-
tem undergoing overall rotation in three-dimensional space, the
total Hamiltonian always admits the following expansion:

Ĥ ¼ Ĥiso þ
X1
l¼1

Xl

m¼�l

Xl

k¼�l

D
ðlÞ
kmQ̂ ðlÞkm ð15Þ

where Ĥiso is the isotropic part of the Hamiltonian, D
ðlÞ
km are Wigner

functions (of Euler angles or any other rotation parameters) specify-
ing molecular orientation and Q̂ ðlÞkm are static spin operators. The sit-
uations in which Eq. (15) contains l ranks other than 2 are rare
[56,57], and the expressions used in the rotations module of Spinach
explicitly assume second rank interactions. The rotational basis
operators Q̂ km are then related to second-rank irreducible spherical
tensor operators:

Q̂km ¼
X

L

UmðB; LÞT̂ð2Þk ðB; LÞ þ
X

LS

UmðL; SÞT̂ð2Þk ðL; SÞ

þ
X

S

UmðS; SÞT̂ð2Þk ðS; SÞ ð16Þ

where L and S indices enumerate the spins and the reduced orien-
tation functions Um(B, L), Um(L, S) and Um(S, S) depend on the
eigenvalues and molecular frame orientations (given by another
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set of Wigner functions) of linear, bilinear and quadratic interaction
tensors respectively:

Um ¼
aXX � aYY

2
D
ð2Þ
m;�2 þD

ð2Þ
m;2

� �
þ 2aZZ � ðaXX þ aYYÞffiffiffi

6
p D

ð2Þ
m;0 ð17Þ

If the full interaction tensor is known the interaction Hamiltonian
can be written in terms of all the interaction tensor elements. The
reduced orientation functions may then be written as [35]:

U�2 ¼
1
2
ðAxx � Ayy � 2iAxyÞ

U�1 ¼ ð�Axz � iAyzÞ

U0 ¼
ffiffiffi
3
2

r
Azz

ð18Þ

where A is a symmetric traceless interaction tensor. The irreducible
spherical tensors in Eq. (16) are defined in the usual way [58]. An in
depth derivation of Eqs. (15)–(18), as used in the Spinach rotations
module, is given in [63].

2.8. Diagonalization-free relaxation theory

The standard way of computing the integral encountered in the
Liouville space formulation of Bloch–Redfield–Wangsness relaxa-
tion theory [59–61]

^̂R ¼ �
X
kmpq

Z 1

0
GkmpqðsÞ

^̂Q kme�i ^̂H0s ^̂Q ypqei ^̂H0sds;

GkmpqðsÞ ¼ hDð2Þkmð0ÞD
ð2Þ	
pq ðsÞi ð19Þ

(angular brackets denote ensemble average) is to diagonalize ^̂H0

and expand ^̂Qkm in its eigenstates, at which point the integral col-
lapses into a collection of analytical Fourier transforms of the corre-
lation functions Gkmpq(s). In small systems, as well as those where
^̂H0 is dominated by Zeeman interactions, this is easy, but as soon
as the problem dimension exceeds about 104, the diagonalization
is no longer feasible. The small-step propagator

exp½�i ^̂H0Ds�; k ^̂H0kDs 6 1 ð20Þ

however, is still easily computed (e.g. using Taylor expansion with

matrix clean-up described in Section 2.6) for ^̂H0 dimensions in ex-
cess of 105, and therefore the fastest practical way of evaluating
the integrals making up the sum in Eq. (19)Z 1

0
GðsÞe�i ^̂H0s ^̂Qei ^̂H0sds ð21Þ

is by a fixed-step numerical quadrature, such as Boole’s O(h7) rule
[62]. A detailed account of this numerical integration method, as
implemented in Spinach, is provided in Ref [63]. The general nature
of the rotational factorization described in the previous section
means that all cross-correlations are included automatically.

2.9. Symmetry factorization in Liouville space

In systems with magnetically equivalent spins, the state space
can be reduced by exploiting the associated permutation symme-
try. The symmetry adapted linear combinations ÔðCÞk of the initial
basis operators Ôk belonging to the irreducible representation C
of a group G can be calculated using the character formula [64–66]:

ÔðCÞk ¼ 1
N

X
g2G

vðCÞg gðÔkÞ ð22Þ

in which vðCÞg is the character of the group element g, N is the order
of the group, gðÔkÞ is the result of g acting on Ôk – this action
permutes the order of the direct product components in Ôk and
therefore indices in their descriptors in Eq. (2). The summation is
carried over the individual elements of the symmetry group.

We have recently shown that Liouville space trajectories would
normally stay in the fully symmetric irreducible representation
[26]. This simplifies Eq. (22) – the basis simply needs to be fully
symmetrised with respect to all group operations. Details of this
formalism and its extension to multiple groups of equivalent spins
are presented in our recent paper [26] and earlier papers by other
authors [16,67–70]. Eq. (22) as well as the auxiliary group direct
product procedures [64–66] are used by the Spinach symmetry
module.

2.10. State space connectivity tracing

The Liouvillian matrix, even after state space restriction, ZTE
and symmetry factorization, is still very sparse – each state is only
directly connected to a few other states. It is often the case that
there are disconnected sub-networks within this connectivity net-
work. To take advantage of this fact, the Liouvillian may be treated
as the adjacency matrix of a graph: diagonal elements correspond
to nodes and off-diagonal elements to edges of the graph. The non-
interacting subspaces then correspond to disjoint subgraphs and
may be found in O(n) time with respect to the number of non-zeros
in the Liouvillian [26]. To this end Spinach employs Tarjan’s graph
partitioning algorithm [71,72]. The input parameter is a binary
form of the Liouvillian:

Pnk ¼
1 if jLnkj > e
0 otherwise

	
ð23Þ

where e, a user-supplied tolerance, is set to zero for an exact proce-
dure, but may be set higher to increase the sparsity of the Liouvil-
lian. Tarjan’s algorithm returns node indices for each disjoint
subgraph, which correspond to state indices for each non-interact-
ing subspace.

If the state space can be written as a direct sum of N non-inter-
acting subspaces, the dynamics of an observable â in the full space
is a sum over such subspaces:

hâiðtÞ ¼ hâjq̂ðtÞi ¼ âje�i ^̂Ltq̂ð0Þ
D E

¼ 

N

n¼1
âðnÞ


 ����e�i 

N

n¼1

^̂L

� �
t


N

n¼1
q̂ð0Þ

+

¼ 

N

n¼1
âðnÞ 


N

n¼1
e�i^̂LðnÞt 


N

n¼1
q̂ð0Þ

����
�
¼
XN

n¼1

âðnÞ
��e�i^̂LðnÞtq̂ðnÞð0Þ

D* +

¼
XN

n¼1

âðnÞ

 �

ðtÞ ð24Þ

Taking advantage of this block structure significantly accelerates
the simulations – for example, over 500 independent subspaces are
identified in the HSQC simulation of sucrose (hsqc_test_1.m file
in the Spinach examples directory), with the result that the biggest
subspace encountered in the fairly sophisticated simulation of a
30-spin system (!) has the dimension of 238. Some of the blocks
often turn out to be empty. The Spinach connectivity tracing module
runs a zero check on all subspaces; any subspace that is not popu-
lated is dropped.

2.11. Conservation law screening

In the rare cases where an analytical criterion for subspaces is
known, it is possible to perform the connectivity tracing analyti-
cally on the state list before the operators are built. If an operator
Â commutes with the system Hamiltonian its corresponding obser-
vable must be a constant of motion. Any state with an expectation
value hÂi that does not coincide with that of the initial state vio-
lates the conservation law, will never be populated and may be
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eliminated. The active subspace is therefore the intersection of
hÂi ¼ const subspaces for every linearly independent operator Â
in the null space of ^̂H [26]. Additionally, if q̂ð0Þ is an eigenstate

of the commutation superoperator ^̂A, then the eigenvalue a must

also be conserved. Almost inevitably ^̂A has more than one possible
eigenvalue, and states may be grouped according to common val-
ues of a. These groups are non-interacting subspaces as described
in the section above.

Simple quantities often conserved during the evolution of spin
systems are the total spin Ŝ2 and the total Z-component of spin ŜZ:

Ŝ2 ¼
X
n;k

ŜðnÞZ ŜðkÞZ þ
1
2

ŜðnÞþ ŜðkÞ� þ ŜðnÞ� ŜðkÞþ
� �� �

; ŜZ ¼
X

k

ŜðkÞZ ð25Þ

As the ISTs are eigenstates of the corresponding superoperators,
with eigenvalues given by l(l + 1) and m respectively, a rapid
screening procedure is possible using indexed notation from Eq.
(2).

Examples of conservation-screened basis sets in Spinach are
ESR-1, which is adapted for high-field ESR spectroscopy, and
MARY-1, intended for MARY (magnetically altered reaction yield)
[93,94] simulations. ESR-1 includes the complete state space for
all electrons (which are pulsed and observed), but only the identity
state and T̂ l0 for the nuclei, taking into account the fact that, in sim-
ple pulsed ESR experiments at high field, the transverse nuclear
states are never populated [73]. The MARY-1 basis set only includes
the ‘‘zero-quantum subspace’’ – states with hŜZi ¼ 0, taking advan-
tage of the corresponding conservation law.

3. Spinach kernel

The code base of Spinach has two parts: the kernel, containing
very general functions applicable to any spin system, and the
user-land – a collection of case-specific functions, experiment
models and pulse sequences. A schematic of this arrangement,
showing the flow of data between major functions in the kernel
and the user-land, is given in Fig. 1.

At the start of the simulation the spin system information is
either supplied directly to the kernel, using the syntax documented
in Table S1 of the Supplementary Information, or read in from a
third-party data file using one of the import filters in the user-land
(Gaussian03 [74] logs and Simpson [7,22] ⁄.in files at the time of
writing). The kernel oversees the utilization of this information
in the most efficient way possible and supplies the user-land with
directly usable objects, such as superoperator matrices (Hamilto-
nian, relaxation, kinetics, etc.), state vectors and propagators. These
can either be used directly using the established spin dynamics
simulation techniques, or supplied to the various time evolution
modules also provided by the kernel (Fig. 1). Importantly, the
sophisticated state space restriction technology reviewed in the
previous section is handled transparently – all procedures de-
scribed in Section 2 are performed automatically (but may also
be applied manually using the syntax documented in Section 4).
The kernel guarantees that the matrices and vectors it provides
may be used directly, meaning that any existing Liouville-space
spin dynamics simulation code may be ported to Spinach (and con-
siderably accelerated for large spin systems) by simply using the
superoperators and state vectors supplied by the Spinach kernel in-
stead of the usual direct product matrices.

The flow of superoperators and state vectors through the kernel
is illustrated in the left panel of Fig. 1. The product superoperators,
generated by p_superop, are used by k_superop to generate the
kinetics superoperators and by c_superop to generate commuta-
tion superoperators. The latter are used by h_superop to generate
the isotropic part of the Hamiltonian superoperator and the
rotational basis for its anisotropic part. Those are then used in
the rotation (orientation) and relaxation (r_superop) modules
to generate specific orientation Hamiltonians and relaxation super-
operators respectively.

The kernel provides basic time propagation functionality and
trajectory-level state space restriction tools (Fig. 1, bottom left),
such as connectivity tracing [26] and zero track elimination [28].
These are also performed transparently and automatically by the
evolution function.

3.1. Kernel data structure

The kernel keeps all simulation information in a single struc-
tured array called spin_system, which is generated by the
create.m function and updated by the basis.m function. Its first
level sub-fields are listed in Fig. 2 and each subfield is further elab-
orated upon via complete schematics given in the Supplementary
Information, Figs. S1–S4. The user-land can use this structure to re-
trieve information about any aspect of the simulation. The
spin_system structure is also used throughout the kernel as a
source of information used to generate various infrastructure ob-
jects (e.g. superoperators) and perform infrastructure operations
(e.g. propagation) in the most efficient way possible.

3.2. Spin system creation and basis specification

These functions must be the first kernel call. They control the
parameters of the simulation, the structure of the spin system, tol-
erances on all approximations, output level and algorithm selec-
tion. After all parameters are processed, these functions create
the spin_system data structure. The call syntax is

spin_system=create(sys,inter);

spin_system=basis(spin_system,bas);

where the sys and inter structures are described in Table S1 and
the bas structure is described in Table S2 in the Supplementary
Information. It is often convenient to generate sys and inter

structures using one of the import filters available in the user-
land (Section 5). Both functions produce extensive diagnostic
output about the structure and interactions found within the spin
system. All approximations and assumptions are also explicitly
printed.

Spinach supports complete, restricted and connectivity-adap-
tive basis sets. The greater the coupling density in the spin system
and the longer the simulation, the bigger basis is required. Liquid-
state NMR simulations (pulse-acquire, DQF-COSY, HSQC, etc.) are
accurately simulated with IK-1 and IK-2 basis sets (Table S2);
reducing the basis causes a gradual loss of multiplicity detail, as
shown in Fig. 3. This basis size dependence is similar to the one ob-
served in the electronic structure theory – the bigger the basis, the
more accurate the result.

Every approximation in Spinach has an associated set of toler-
ances that may be altered by setting sys.tols.⁄ sub-fields (the
complete list is given in the Supplementary Information
Table S3). The defaults are very conservative and guarantee accu-
rate results in a large variety of simulations. Relaxing these toler-
ances from their default values would in many cases significantly
accelerate the simulation.

3.3. Product superoperators, commutation superoperators and state
vectors

The basic building blocks for all Liouville-space superoperators
are product and commutation superoperators generated by direct
products of irreducible spherical tensors:



Fig. 2. Top level sub-fields of the spin_system data structure, which controls the behavior of all algorithms and functions in Spinach kernel. This structure is constructed by
create (Table S1 in the Supplementary Information) and updated by basis (Table S2 in the Supplementary Information).
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Fig. 3. A cross-peak from the DQF-COSY spectrum of sucrose (22 1H nuclei, dqf_cosy_test_2.m file in the Spinach example set) computed using explicit time propagation in
Liouville space as a function of the basis set (Table S2 in the Supplementary Information) used for the simulation. The size of the largest matrix encountered in the simulation
is 206 for IK-2, 4906 for IK-1(6,3), 1367 for IK-1(5,2), 418 for IK-1(4,1), 123 for IK-1(3,1) and 21 for IK-1(2,1).
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Q̂ ¼ �
N

n¼1
T̂ lnmn ;

^̂Q� ¼ ½Q̂ ; ��� ¼
^̂Q L � ^̂Q R;

^̂Qþ ¼ ½Q̂ ; ��þ ¼
^̂Q L þ ^̂Q R;

^̂Q Lq̂ ¼ Q̂ q̂;
^̂Q Rq̂ ¼ q̂Q̂ ð26Þ

where ^̂Q L and ^̂QR are left and right product superoperators, ^̂Q� is the
commutation superoperator corresponding to Q̂ , and ^̂Qþ is the anti-
commutation superoperator. Product, commutation and anticom-
mutation superoperators are available by using the following
syntax:

L=c_superop(spin_system,opspec);

L=a_superop(spin_system,opspec);

L=p_superop(spin_system,opspec,side);

where L is the superoperator in question, side can be ‘left’ or
‘right’ and opspec is the Spinach operator specification – a
compact internal notation used to represent spin operators and
states. An opspec is a string of integers giving the states of each
individual spin in the order of their appearance in the sys.iso-

topes variable. The state indexing convention follows Eq. (3).
The first nine ISTs are listed explicitly in Table S4 in the Supple-
mentary Information, along with their associated spherical har-
monics. The sequence of integers in opspec is mapped into the
sequence of operators in the direct product, for example:

½0203102100� ¼> ½Ê� L̂Z � Ê� L̂� � L̂þ � Ê� L̂Z � L̂þ � Ê� Ê; ��

Similar syntax is used by the statevec.m function that returns the
state vectors:

rho=statevec(spin_system,opspec);
It is not always convenient to supply the superoperator and
state specification in the form described above, and the user-land
has wrapper functions providing a more eye-friendly syntax:

rho=state(spin_system,oper,spins)

L=operator(spin_system,oper,spins)

where spins may be set to ‘all’, ‘1H’, ‘13C’, etc. and oper to
‘Lz’, ‘L+’ or ‘L-‘. These functions parse the user-friendly input,
convert it into opspec and call statevec and c_superop

respectively.

3.4. Hamiltonian commutation superoperator

The kernel function returning the isotropic Hamiltonian com-
mutation superoperator has no adjustable parameters:

H_iso=h_superop(spin_system);

except for the option to ignore the secularity status of all interac-
tions and return the full non-secular laboratory frame Hamiltonian
superoperator:

H_iso=h_superop(spin_system,‘full’);

This second option is most commonly invoked by the relaxation
superoperator module and may be useful in the rare cases where a
laboratory frame simulation needs to be performed. A call with
two output parameters
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Fig. 4. Screenshots of the results produced by some of the example simulation files supplied with Spinach. Full simulation details are available within the files specified. (A)
Solid-state ESR spectrum of a nitroxide radical (esr/solids_test_1.m) – two-spin system; state space reduction: 36 ? 12. (B) Liquid state ESR spectrum of the same radical
with BRW relaxation theory enabled (esr/relaxation_test_2.m) � seven spin system; state space reduction: 36 ? 3. (C) HETCOR spectrum of sucrose computed using
explicit time propagation in Liouville space, magnetic parameters imported from a DFT simulation (nmr/hetcor_test_1.m) � 34 spin system; state space reduction:
1020 ? 158 subspaces with 6200 states each. (D) The excitation profile of a Q5 pulse applied to a linear chain of 30 strongly coupled (nearest neighbor) protons (nmr/
shaped_pulse_test_1.m) � 31 spin system; state space reduction: 1018 ? 323. (E) Solid state 235U NMR spectrum of a uranium nucleus with an axial quadrupolar
interaction (nmr/solids_test_4.m), complete basis set. (F) NOESY spectrum of strychnine, computed with full Redfield superoperator using explicit time propagation in
Liouville space, magnetic parameters and coordinates imported from a DFT simulation (nmr/noesy_test_1.m) – 21 spin system; state space reduction: 1013 ? 246
subspaces with 61510 states each. (G) Singlet yield anisotropy for a radical pair with a single nucleus with an axial hyperfine coupling (spin_chemistry/
maryan_test_1.m) – three spin system; state space reduction: 64 ? 4 subspaces with 615 states each. (H) Magnetic field dependence of the singlet yield for a radical pair
(spin_chemistry/mary_test_2.m) – eight spin system; state space reduction: 65,536 ? 4 subspaces with 6290 states each. Sub-fields of the spin_system data structure
controlling the composition of the spin system (comp) and the basis set used during the simulation (bas).
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[H_iso,Q]=h_superop(spin_system);

returns the rotational basis f ^̂Q kmg, computed using Eq. (16), for the
anisotropic part of the Hamiltonian commutation superoperator.
The anisotropic part for a specific spin system orientation may be
obtained by supplying the resulting Q variable, along with the
three Euler angles, to the orientation function:

H_aniso=orientation(spin_system,Q,. . .

[alpha beta gamma]);

This function is used, in particular, during the calculation of
powder averages using pre-computed orientation sets correspond-
ing to Lebedev spherical integration grid points [75]. Powder aver-
aging in general is a user-land problem – the kernel only provides
the grids.

Unless the sys.lowfield switch is set or triggered by setting
sys.magnet to zero, Spinach would run time propagation in the
multiply rotating frame with respect to all Zeeman interactions
in the system. The decisions on the secularity status of all inter-
actions are made during the call to secularity.m kernel func-
tion. For Zeeman interactions: all terms ðL̂Z; L̂�Þ at low field,
secular terms (L̂Z only) at high field. For bilinear couplings: all
terms ðT̂ ð2Þ0 ; T̂ ð2Þ�1; T̂

ð2Þ
�2Þ at low field, secular terms (T̂ ð2Þ0 only) between

spins of the same type at high field and weak coupling terms
(L̂ZŜZ only) between spins of different type at high field. For qua-
dratic couplings: all terms (T̂ ð2Þ0 ; T̂ð2Þ�1; T̂

ð2Þ
�2) at low field, secular

terms (T̂ ð2Þ0 only) at high field. Partially rotating frames (such as
those used in ENDOR and ESEEM simulations) can also be
specified.

The primary danger associated with the common practice of
running simulations in the multiply rotating frame is in the
assumption that the non-secular interaction terms are negligible.
While this is certainly true for mainstream NMR and ESR simula-
tions, care must be taken when running at magnetic fields that
do not greatly exceed the magnitude of couplings in the system.
The internal heuristic in Spinach is likely to make the right choice,
but we would still encourage users to inspect the diagnostic output
produced by h_superop to ensure that the secularity assumptions
are correctly set for the system in question. The secularity status of
all interactions may be specified manually by setting the
inter.zeeman.strength and inter.coupling.strength vari-
ables and passing them to create (Section 3.2).
3.5. Relaxation superoperator

The function itself has no adjustable parameters:

R=r_superop(spin_system);
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and uses the information (theory, correlation time, etc.) that the
user has supplied to the create function. While the ‘none’ and
the ‘damp’ options (Table S1 in the Supplementary Information)
are obvious, some further notes are in order for Redfield theory
[59–61].

Spinach implements a very general case of Bloch–Redfield–
Wangsness relaxation theory (see Sections 2.6 and 2.7 as well as
our recent papers [20,63] on the subject), which includes the ‘‘dif-
ficult’’ contributions, such as interaction rhombicities, cross-corre-
lations [76,77] and dynamic frequency shifts [78,79]. Contributions
from all couplings present in the system (including quadrupolar
and zero-field splitting) are included, and the theory is not re-
stricted to high-field systems – the role of ^̂L0 can be played, for
example, by a particularly large isotropic hyperfine coupling. The
relaxation superoperator evaluation procedure, detailed in Sec-
tion 2.7, is specifically designed to allow very large matrix dimen-
sions (up to �106 on a desktop workstation) to be processed [63].

Relaxation to thermal equilibrium, if requested by setting
inter.equilibrium to ‘thermal’, proceeds using the method out-
lined by Levitt and Di Bari [80], whereby the relaxation to the equi-
librium state vector q̂ð0Þ

d
dt

q1

..

.

qn

0
BB@

1
CCA¼�i

L11 � � � L1n

..

. . .
. ..

.

Ln1 � � � Lnn

0
BB@

1
CCA

q1

..

.

qn

0
BB@

1
CCAþ

R11 � � � R1n

..

. . .
. ..

.

Rn1 � � � Rnn

0
BB@

1
CCA

q1�qð0Þ1

..

.

qn�qð0Þn

0
BB@

1
CCA

ð27Þ

is introduced as an extra row and column in the Liouvillian:

d
dt

1
q1

..

.

qn

0
BBBB@

1
CCCCA ¼ �i

0 0 � � � 0

�i½^̂Rqð0Þ�1 L11 þ iR11 � � � L1n þ iR1n

..

. ..
. . .

. ..
.

�i½^̂Rqð0Þ�n Ln1 þ iRn1 � � � Lnn þ iRnn

0
BBBBB@

1
CCCCCA

1
q1

..

.

qn

0
BBBB@

1
CCCCA
ð28Þ

Because the first element of any Spinach basis is the unit operator,
this change of dimension is not required and the procedure
amounts to introducing a one-way cross-term to the unit operator.
The time propagation functions supplied by the kernel (evolution
and step) are aware of Eq. (28) and will automatically relax the
system towards the equilibrium requested.

3.6. Kinetics superoperator

The chemical kinetics superoperator is requested by:

K=k_superop(spin_system);

and uses the information from inter.chem variable that the user
supplied to create. Spinach takes advantage of the fact that
bosons and fermions of the same type are fundamentally identical
and assumes that chemical exchange processes amount to the
transport and flux of magnetization within a topologically fixed spin
system rather than to moving spins. For chemical exchange, net-
works of first-order chemical processes are supported:

d
dt
½Aj� ¼

Xn

m¼1

kjm½Am� )
d
dt
~AðtÞ ¼ K~AðtÞ ð29Þ

where [Aj] is the concentration of spin j and kjm is the rate of mag-
netization transport from spin m to spin j. An important condition
on the elements of the kinetics matrix K is that the diagonal ele-
ments must balance out the off-diagonal elements so that the law
of the conservation of matter is observed.
From the simulation perspective, when magnetization is
pumped over from site n to site m in a spin system, the state pop-
ulations are pumped across between the following states:

. . .� L̂ðnÞa � . . . ! . . .� L̂ðmÞa � . . . ð30Þ

where a = {z, +,�, . . .} is an index running over the elements of the
spin state space. The task of constructing a superoperator that
would perform this action amounts to subtracting a slice of the pop-
ulation from h. . .� L̂ðnÞa � . . .i and forwarding it to h. . .� L̂ðmÞa � . . .i:

^̂K ¼ kmn L̂ðmÞa

��� E
L̂ðmÞa

D ���� L̂ðnÞa

��� E
L̂ðnÞa

D ���� �
ð31Þ

The superoperator in brackets shifts the population from one state
to another [45].

The policy on chemical transport of multi-spin orders is case-
dependent. In principle, the coherence with any observer spins
must be preserved during chemical exchange, that is:

. . .� S� . . .� L̂ðnÞa � . . . ! . . .� S� . . .� L̂ðmÞa � . . . ð32Þ

and, so long as we are treating a single system (or an ensemble of
systems, which have chemical exchange happening inside them),
this should be taken into account. In a typical solution, however,
this would lead to the emergence of inter-molecular coherences be-
tween identical molecules – a situation that density matrix formal-
ism is ill-equipped to accommodate. Because such coherences are
non-observable and the spin is very unlikely to jump back to the ex-
act molecule that it originally came from, the coherences in ques-
tion are counted as lost:

^̂K ¼ �kmn Ŝ� L̂ðnÞa

��� E
Ŝ� L̂ðnÞa

D ��� ð33Þ

and the corresponding contribution to the kinetics superoperator
effectively causes relaxation.

For reactive radical pair simulations of the kind often encoun-
tered in Spin Chemistry [81–83], the singlet and triplet recombina-
tion superoperators may be included into ^̂K by setting the
inter.chem.rp variables (Table S1 in the Supplementary Informa-
tion). The theories available at the time of writing are Haberkorn
[81] and Jones–Hore [83]:

^̂KHq̂ ¼ �1
2
ðkT½Q̂ T; q̂�þ þ kS½Q̂ S; q̂�þÞ ð34Þ

^̂K JHq̂ ¼ �ðkS þ kTÞq̂� kSQ̂ Tq̂Q̂T � kTQ̂Sq̂Q̂ S ð35Þ

where kS;T are singlet and triplet radical pair recombination rate
constants, []+ denotes an anticommutator, and Q̂ S;T are singlet and
triplet projection operators.

3.7. Exponential propagator

For a given Liouvillian superoperator ^̂L and a given time step Dt,
the exponential propagator expð�i^̂LDtÞ can be requested as:

P=propagator(spin_system,L,delta_t);

The seemingly unsophisticated choice of matrix exponentiation
algorithm in Spinach – Taylor series with scaling and squaring
[54,55]

expð�i^̂LDtÞ ¼
X1
n¼1

ð�iDtÞn

n!
^̂Ln expð�i^̂LDtÞ ¼ exp

�i^̂LDt
k

 !" #k

ð36Þ

is a consequence of the need to handle very large sparse matrices,
which must stay sparse and for which only approximate norms
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are known. All other methods either involve dense matrices (e.g. the
division operation in the Padé method and the diagonalization in
the eigenvalue method [55]) or place strict constraints on the ma-
trix norm (e.g. Chebyshev exponentiation [8,10]). Taken together
with the requirement to maintain matrix sparsity at all times (see
Section 2.5 above), and the need to work gracefully with inexperi-
enced users, this leaves us with Taylor approximation, with its infi-
nite convergence radius and retention of sparsity, as the optimal
choice. In practice, the scaled Taylor series converges in 10–15 iter-
ations. The use of Chebyshev approximation can be requested by
setting the sys.tols.exponentiation switch (Table S3) to
‘chebyshev’.

The propagator function monitors the matrix density and
switches over to dense algebra if it cannot avoid exceeding the ma-
trix density threshold, which is set at 25% by default. For small
time steps, the number of non-zeros in the propagator is similar
to that of the Liouvillian. It increases rapidly as soon as the time
step crosses the k^̂LkDt ¼ 1 threshold.

Derivatives of the exponential propagator

@

@a
expð�i^̂LDtÞ ¼

X1
n¼1

ð�iDtÞn

n!

Xn�1

k¼0

^̂Lk^̂L0a
^̂Ln�k�1

¼ expð�i^̂LDtÞ
X1
n¼1

ð�iDtÞn

n!
½^̂L; ½^̂L; . . . ½^̂L; ^̂L0a� . . .�� ð37Þ

with respect to an arbitrary linear parameter a of an arbitrary oper-
ator ^̂L0a occurring in ^̂L are available by the use of the following syntax

P=propagator(spin_system,L,delta_t,derivatives);

where derivatives is a cell array of matrices corresponding to the
^̂L0a operators for all the necessary parameters a. For the same reasons
(sparsity, convergence and robustness) as the Taylor series above,
the commutator series given in Eq. (37) is used for the evaluation
of the propagator derivatives. They are used, in particular, by the
GRAPE gradient [84,85] module described in Section 3.11 below.

3.8. Thermal equilibrium

The thermal equilibrium state vector may be requested by
calling:

rho=equilibrium(spin_system);

and setting the inter.temperature variable (Table S1 in the Sup-
plementary Information) before calling create. The general prob-
lem of finding the thermal equilibrium state of an ensemble of
coupled spin systems has exponential complexity, and Spinach
only returns the equilibrium state with respect to the Zeeman
Hamiltonian under the assumption that other interactions in the
system have a negligible effect on the equilibrium distribution of
spin polarization. A warning is printed to this effect every time
equilibrium is called.

Because longitudinal spin states in Liouville space correspond to
polarizations rather than populations, the state vector returned by
equilibrium would in some cases contain small numbers (e.g.
for 15N at room temperature). It is therefore advisable, when run-
ning with accurate thermal equilibria at high temperatures, to in-
spect the trajectory-level state space reduction tolerances
(Table S3) and make sure that important states are not dropped
automatically because of their low occupancies. The default toler-
ances are in most cases tight enough.

It should also be noted that setting the inter.temperature

variable to be identically equal to zero does not collapse the system
into the lowest possible collective energy level, but causes
equilibrium to return the simplified equilibrium state that is
often used in basic NMR and ESR simulations: q̂0 ¼

P
kL̂ðkÞZ ; this is

the default.
Relaxation to thermal equilibrium may be requested by setting
inter.equilibrium to ‘thermal’. Further details are given in Sec-
tion 3.5 above.

3.9. Trajectory-level state space reduction

Even the reduced basis sets, such as IK-2 and ESR-1 (Table S2 in
the Supplementary Information), often turn out to be excessive and
contain unpopulated dimensions [28] which are specific to the
experiments being simulated. They can be pruned using the zero
track elimination procedure (Section 2.4) by calling

P=zte(spin_system,L,rho);

where L is the Liouvillian superoperator, rho is the initial state
vector and P is a matrix projecting the system from the current
to the reduced basis set and back:

^̂LZTE ¼ PT^̂LP q̂ZTE ¼ PTq̂
^̂L ¼ P^̂LZTEPT q̂ ¼ Pq̂ZTE

ð38Þ

The reverse transformation amounts to placing zero tracks back
to their original locations. The detailed analysis of the ZTE tech-
nique is given in our recent paper [28] and summarized in Sec-
tion 2.4 above.

While diagonalization is in most cases unfeasible even for re-
duced Liouvillians because of its O(n3) cost in time and memory,
a sparsity-preserving block-diagonalization can be achieved at
O(n) cost using the connectivity tracing procedure proposed in
our recent paper [26] and summarized in Section 2.9. Projectors
into the subspaces that are disconnected in the current basis
may be requested by calling

P=path_trace(spin_system,L);

where P is a cell array of projectors into disconnected subspaces.
The projectors are applied in the same way as the ZTE projector
in Eq. (38). The efficiency of the path tracing procedure depends
on the choice of the basis set. For the IST basis sets used in Spinach,
there are always at least two (e.g. mary_test_1.m) and sometimes
over a hundred (e.g. hsqc_test_1.m) independent subspaces,
depending on the calculation type and spin interactions present.

ZTE, path tracing and symmetry factorization can be applied
sequentially (symmetry, then ZTE, then path tracing) using a wrap-
per function that returns the projectors into the resulting set of dis-
connected minimal subspaces

P=reduce(spin_system,L,rho);

where P is a cell array of projectors that may be used as prescribed
by Eq. (38). Individual algorithms may be disabled by setting the
sys.disable switch before the call to create (Table S1 in the
Supplementary Information). Unless they are specifically disabled,
trajectory-level pruning algorithms are applied automatically and
transparently every time a call is made to the time evolution
function.

3.10. Time evolution

Two functions are available for moving the state vector forward
in time under a given Liouvillian. A single propagation step Dt un-

der a Liouvillian ^̂L (e.g. a hard pulse with ^̂L ¼ ^̂SX and Dt = p/2) is
best performed with Krylov algorithm using

rho=step(spin_system,L,rho,delta_t);



H.J. Hogben et al. / Journal of Magnetic Resonance 208 (2011) 179–194 189
where rho is the state vector. For a single propagation step, the
Krylov algorithm is faster than matrix exponentiation because it
computes expð�i^̂LDtÞq̂ directly from ^̂L and q̂ using only matrix–
vector multiplications (details are given in Section 2.5). The step

function is also optimal in the case when the Liouvillian is time-
dependent (shaped pulses, etc.) and many steps need to be taken
with different values of ^̂L.

For long trajectories under time-independent Liouvillians, the
kernel provides a fairly sophisticated wrapper function (evolu-
tion.m) that, which automatically takes advantage of the trajec-
tory-level state space reduction functions described in Section 3.9.

� The final state vector after a period of evolution can be
requested by:
rho=evolution(spin_system,. . .

L,[],rho,timestep,nsteps,0final0);

A horizontal stack of state vectors can be supplied, in which
case every vector in the stack is taken forward by the same time
interval.

� System trajectory for a given number of steps under a given
Liouvillian can be requested by:

rho_stack=evolution(spin_system,L,[],rho,. . .

timestep,nsteps,0trajectory0);

The output variable rho-stack contains the state vectors for
every point in the trajectory concatenated horizontally (a total of
nsteps+1 columns). The first point is the initial state. A specific
situation often encountered in NMR and ESR spectroscopy is a
180� ‘‘refocusing’’ pulse in the middle of an incremented evolution
period. The stack of final states for each increment in the duration
of the evolution period can be requested using the ‘refocused_tra-
jectory’ option:

rho_stack=evolution(spin_system,L,[],rho,. . .

timestep,nsteps,’refocused_trajectory’,R);

where R is the cell array of generators of the refocusing pulse (e.g.
p^̂SX in the case of a 180� pulse on the X-axis), which will be applied
in the order of appearance in R.

� The dynamics of the observable corresponding to a given state
vector can be requested by:

observable=evolution(spin_system,L,coil,. . .

rho,timestep,nsteps,’observable’);

where coil (called so for obvious reasons) is the state vector corre-
sponding to the detection state (e.g. Ŝþ in the case of quadrature
detection). If a horizontal stack of state vectors is supplied as the
initial condition, a vertical stack of observable traces is returned,
individual lines corresponding to the observable traces starting
from each of the initial conditions supplied.

The best illustration of the practical use of these options is
the source code of the 2D NMR and DNP pulse sequences in
the user-land (Section 4 and exp directory of the Spinach
distribution).

3.11. Optimal control waveform optimization

Spinach implements the GRAPE (gradient ascent pulse engineer-
ing) procedure [84,85] for optimal control based waveform optimi-
zation. The calling syntax is:
[objective,gradient]=grape(spin_system,drift,. . .

waveform,time_step,nsteps,. . .

starting_state,target_state);

in which drift is the static ‘‘drift’’ Liouvillian, controls is a cell
array of control superoperators, waveform is a row vector giving
the control amplitudes at each step (for multiple control operators,
the waveforms should be concatenated horizontally in the order in
which the control operators are listed in controls), starting_
state is the initial condition state vector and target_state is
the destination state vector, which should be populated to the
maximum possible extent by the optimized waveform. The
objective output is the real part of the scalar product between
the final state and the destination state, and the gradient output
is the gradient of the objective function with respect to the wave-
form parameters, evaluated at the current value of waveform.

The utilization of the resulting objective function and gradient
is a subject of active current research; from the kernel perspective,
this is a user-land problem. Examples of using Matlab’s built-in L-
BFGS [86] optimization module (a part of the Optimization Toolbox)
are given in the examples directory. It should be noted that the
first-order approximation to the GRAPE gradient is often unsuit-
able for BFGS runs [87] due to its limited accuracy, an exact gradi-
ent option is provided for this purpose. This option is chosen by
default, unless the user manually specifies the level of accuracy
in the sys.tols.grape_gradient subfield when calling create

(Table S3 in the Supplementary Information).
4. Spinach user-land

The user-land (Fig. 1) is a diverse and growing collection of
functions written to facilitate the real-world calculations using
the kernel as the simulation back-end. The functions described in
this section are by no means the complete list – they only serve
to illustrate the kind of functionality that the Spinach kernel makes
it easy to implement. The user-land interfaces the kernel to the
outside world and much of it is left to the discretion of the end user
– Spinach is designed to be a re-usable library of basic building
blocks rather than a collection of pre-made simulation scripts.

4.1. Standard NMR pulse sequences

At the time of writing, Spinach user-land provides COSY, COSY-
a, DQF-COSY, HETCOR, HMQC, HSQC, NOESY and pulse-acquire
NMR sequences [45,88,89], the chief limitation on the number of
sequences being the time available to the authors for implement-
ing them. The sequence code resides in the exp directory and runs
comfortably with 40+ spin systems on a desktop workstation. Over
30 examples are provided in the examples directory. The calling
syntax is common for all sequences:

fid=sequence(spin_system,parameters);

where fid is the free induction decay without apodization and
parameters is a structure with the fields listed in Table S5 in
the Supplementary Information. Not all sub-fields of parameters
are applicable to every sequence, the applicable parameters are
listed in the headers of the sequence files.

By default, the pulse sequence functions would assemble their
own Liouvillians. This can be overridden and a user-specified Liou-
villian supplied by using the following syntax:

fid=sequence(spin_system,parameters,L);

where L is the Liouvillian in question.
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The pulse sequences that are intended, by design, for liquid-state
NMR, ignore the sys.regime switch (Table S1 in the Supplemen-
tary Information) and always perform a liquid-state simulation.
An exception is pulse_acquire, which would honor the switch
and run a single-crystal or a powder-average simulation depending
on the value of sys.regime.

An important advantage of simulating an NMR experiment over
running it is the ability to perform coherence selection algebrai-
cally, thus avoiding the expensive phase cycles and gradients en-
tirely – all pulse sequence functions supplied with Spinach make
full use of this fact.

4.2. Shaped pulses

Shaped pulse functions, including a function performing multi-
ple shaped pulses in parallel on different channels, are available,
along with a library of waveforms (Gaussian [90], Q3 and Q5
[91], REBURP [92], etc., courtesy of Prof. K. Pervushin). Matrix expo-
nentiation is avoided during the propagation under a shaped pulse
– Krylov propagation (Section 2.5) [53] is used instead. A waveform
can be read from the library with the following command:

[amplitudes,phases,integral]=. . .

read_wave(filename,npoints)

where npoints is the number of points to which the waveform is to
be resampled (harmonic resampling) and integral is the integral
(Simpson quadrature [62]) of the radiofrequency amplitude across
the pulse. Shaped pulses have no universal calibration criteria –
the integral variable may be used to generate the initial estimate,
but ultimately the pulse amplitude must be calibrated on a test
system ‘‘the spectrometer way’’ – by scaling the overall multiplier.
For a given waveform, a single shaped pulse is executed with:

rho=shaped_pulse(spin_system,L,rho,. . .

spins,offset,phases,amplitudes,duration);

where rho is a state vector, L is the drift Liouvillian, offset is a
shift in the rotating frame frequency to be performed for the dura-
tion of the pulse, spins is a string indicating the nucleus on which
the pulse is to be performed, phases is a row vector giving the
phase of each waveform point, amplitudes is a row vector giving
the amplitude of each waveform point and duration is the pulse
duration. Multiple shaped pulses can be performed with:

rho=sim_pulse(spin_system,L,rho,. . .

spins,offsets,phases,amplitudes,durations)

where rho is a state vector, L is the drift Liouvillian, offsets is a
row vector of rotating frame frequency shifts to be performed at
each channel for the duration of the pulse, phases is a cell array
of row vectors giving the phase of each waveform point at each
channel, amplitudes is a cell array of row vectors giving the
amplitude of each waveform point at each channel, durations
is a row vector of pulse durations at each channel and spins is a
cell array of strings specifying the channels on which each pulse
is to be performed. The sim_pulse function resamples the grids
of the input waveforms onto a common time grid, generates a uni-
fied Liouvillian stack on the resulting common grid and applies the
resulting propagators to the state vector. The pulse centres are
aligned in the resulting combined waveform.

4.3. Spin Chemistry experiments

Spinach provides isotropic and anisotropic MARY [93,94] exper-
iments as well as a template singlet state dynamics experiment,
which may be used to build a large variety of case-specific Spin
Chemistry simulations. An option is available to use Redfield relax-
ation theory (Section 2.7) where the role of ^̂L0 is played by the iso-
tropic hyperfine interaction. Accurate quantum mechanical models
of radical pair recombination (Section 3.6) are also implemented.
The calling syntax for MARY is:

M=mary(spin_system,fields,kinetics);

where fields is a vector of magnetic fields in Tesla, kinetics is a
vector of exponential model recombination rates in Hz and M is a
matrix of singlet yields evaluated for each combination of mag-
netic field and recombination rate. The MARY-1 basis (Table S2 in
the Supplementary Information) is specifically designed for MARY
experiments.

The anisotropic MARY syntax is:

M=maryan(spin_system,field,kinetics);

where field is the magnetic field in Tesla and kinetics is the
exponential model recombination rate. The function evaluates
the full orientation profile of the singlet yield on a 10,242-point
(default) icosahedral spherical grid and returns the array of singlet
yields as a function of spherical angles (there are three columns in
the output matrix M: h, u and singlet yield).

The template magnetic field effect experiment returning the
singlet state dynamics curve is invoked as:

ssd=mfe(spin_system,field,timestep,nsteps);

where field is the magnetic field in Tesla, timestep is the simula-
tion time step in seconds, nsteps is the number of time steps and
ssd is a vector giving the singlet state population at every step in
the simulation. The relaxation and kinetics parameters for mfe are
set in the call tocreate (Table S1 in the Supplementary Information).

4.4. Standard ESR experiments

The following pulsed ESR experiments are available in Spinach
user-land at the time of writing: pulse-acquire, ESEEM [95] and
Mims ENDOR [96]. Electron shells of any multiplicity can be re-
quested (Table S1 in the Supplementary Information). Redfield
relaxation theory (Section 2.7) and kinetics superoperators (Sec-
tion 3.6) are available.

Two specialized basis sets (Table S2 in the Supplementary Infor-
mation) are available for ESR calculations. The ESR-1 basis set is in-
tended for simple high-field ESR experiments with isotropic
hyperfine couplings and includes the complete state space for all
electrons (which are pulsed and observed), but only the identity
state and T̂ l0 for the nuclei (conservation law screening, see Sec-
tion 2.11). ESR-2 is intended for most high-field ESR simulations
(possibly involving relaxation, chemical kinetics and anisotropic
couplings) and includes a complete basis set on all electrons and
anisotropically coupled nuclei, but only Ê and T̂ l0 for the isotropi-
cally coupled nuclei. This, when used together with the non-inter-
acting subspace separation procedure (Section 2.10), is effectively
a generalization of current wisdom about the state spaces encoun-
tered in high-field ESR dynamics [73].

4.5. Spin system import filters

At the time of writing, Spinach provides import filters for Gauss-
ian03 [74] magnetic property calculation logs and Simpson [7,22]
⁄.in files. The parse command

properties=g03_parse(filename);
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will read the following properties if they are found in the Gaussian
log: atomic coordinates in the standard orientation, SCF energy,
hyperfine coupling tensors, g-tensor, shielding tensors and scalar
coupling constants. The properties are placed into the sub-fields
of the properties structure. All coupling tensors are symme-
trized automatically – we are not convinced that the interaction
tensor asymmetries [56,57] that come out of Gaussian calculations
are physically real. The selection of properties for import into Spin-
ach is handled by the g03_to_spinach function:

[sys,inter]=g03_to_spinach(properties,. . .spins,

references,options);

which generates the sys and inter fields that may be passed to
create (Section 3.2). The spins option is a cell array listing the
spins and isotopes to be imported, e.g.

{{‘H’,‘1H’},{‘N’,‘14N’},{‘E’,‘E3’}}

instructs the function to import hydrogens as 1H, nitrogens as 14N
and assume the electron shell to be in a triplet state. Because
Gaussian03 reports chemical shielding relative to the bare nucleus
in vacuum, a set of references is required to transform it into IUPAC
conventions [97]. The references variable is a row vector listing
such reference chemical shielding (e.g. 1H shielding computed for
TMS at the same level of theory) for all spins in the order of their
appearance in the spins variable. Case-specific import criteria
can be supplied using the options variable (Table S6 in the Supple-
mentary Information). Because the size of the restricted basis set
often depends on the interaction topology, these options should
be considered carefully.

The spinsys section of a Simpson [7,22] input file can be read
and converted into Spinach sys and inter structures using:

[sys,inter]=simpson2spinach(filename);

this function is a part of a two-way interface to Simpson, which is
presently under development.
4.6. Apodization and plotting

Unless relaxation theory, powder averaging or chemical kinetics
are enabled in the simulation, the FIDs produced by Spinach do not
decay and require manual apodization. Several basic methods can
be applied by calling

fid=apodization(fid,window_type,parameters);

Because of the way the Fourier transform is implemented in
Matlab, the first point (1D) or the corner point (2D) of the free
induction decay must be halved prior to performing the FT; this
correctly places the baseline at the zero level and is silently done
when apodization is called.

The 1D NMR/ESR plotter function in Spinach is unremarkable; it
simply calls Matlab’s plotting routine and labels the axes:

plot_1d(spin_system,spectrum,parameters);

accepting the same parameters structure as was used to invoke
the pulse sequence (Section 4.1). The 2D contour plotting function
is considerably more sophisticated and deserves some attention.
The full call:

contour_plot(spin_system,spectrum,parameters,. . .

ncont,delta,k,ncol,m);
where the parameters is the same structure as was used to run
the pulse sequence, the number of contours (ncont), the minimum
and maximum contour elevation as a fraction of highest absolute
intensity in the spectrum (delta), the curvature parameter for
the contour spacing function (k=1 corresponds to linear contour
spacing, k>1 bends the spacing to increase contour density
towards the baseline), number of colors in the colormap (ncol)
and the curvature of the colormap (m=1 corresponds to a linear
color ramp into the red for positive contours and into the blue
for negative contours, m>1 makes colors saturate faster further
away from the baseline). The basic three-parameter call:

contour_plot(spin_system,spectrum,parameters);

assumes the (generally reasonable) values of ncont=20,

delta=[0.02 1.0], k=2, ncol=256, m=6. The baseline color is
automatically set to 10% gray to prevent it from blending with
the white background.

4.7. Rotations

Few things in elementary physics look as easy and are as deadly
as three-dimensional rotations – Leonard Euler’s original error of
selecting an invalid parameterization for SO(3) is so profound
and has such far-reaching consequences [98] that the internal pol-
icy of the Spinach kernel specifically forbids any interaction speci-
fication other than the 3 
 3 matrix and any orientation
specification other than the Wigner matrix. All other conventions
are converted at the kernel entry point and all internal functions
are written accordingly.

Still, the need for conversion between rotational conventions
does occasionally arise in practice, and Spinach provides, without
warranty, the following functions:

� S=euler2dcm(angles);

takes Euler angles (Varshalovich B convention) and returns a
directional cosine matrix (DCM), which is well defined for S�1DS
transformations that recover the 3 
 3 matrix for tensors supplied
as eigenvalues and Euler angles.

� W=euler2wigner(angles);

takes Euler angles (Varshalovich B convention) and returns a
second-rank Wigner function matrix Wmk ¼ D

ð2Þ
mkða;b; cÞ, which is

sorted in descending order with respect to both indices.

� W=dcm2wigner(S);

converts a directional cosine matrix into Wigner matrix. It should be
noted that matrices coming out of the interaction tensor diagonaliza-
tion procedure are often a reflection away from the DCM, because of
the randomness associated with eigenvector phase.

� [alpha,beta,gamma]=dcm2euler(S);

converts a directional cosine matrix into Euler angles. This is not a
well-defined procedure from the Lie algebraic point of view [98],
and it should be avoided if possible. The above mentioned issue of
eigenvector matrix not always being equal to DCM also applies.

� [alpha,beta,gamma]=quat2euler(q);

converts a quaternion rotation specification into Euler angles. All
the above-listed health warnings associated with Euler angles
apply.
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5. Examples

The examples directory of the Spinach distribution contains
over 50 well-commented simulation scripts covering most of
the program functionality. Expert users would probably find it
helpful to examine the source code of the pulse sequence simu-
lation functions in the exp directory. A representative collection
of screenshots is given in Fig. 4 and a very detailed walk-
through of several example codes is given in the Supplementary
Information. These include an accurate DQF-COSY spectrum of
rotanone (22 spins with a sparse network of scalar couplings),
a pulsed ESR spectrum of the TEMPO radical and the Redfield
relaxation superoperator for a simple model system. The kinetics
module neatly reproduces the Anderson statistical theory line
shapes [99] (Fig. S5 in the Supplementary Information) and
even the ‘‘impossible’’ double-quantum coherence peaks to the
solvent [100] described by Warren et al. are easily simulated
(Fig. S6).

The kernel of Spinach is flexible, efficient and well commented –
there is no reason for an advanced user to stay constrained to the
functions already provided in the user-land. A good illustration of
kernel calls being used in a practical context is the HMQC sequence
code (hmqc.m in the exp directory). We will give a commented
walkthrough below.

After printing diagnostic messages to the console, hmqc.m pro-
ceeds to request the Liouvillian (including relaxation and kinetics
superoperators) from the kernel:

H=h_superop(spin_system);

R=r_superop(spin_system);

K=k_superop(spin_system);

L=H+1i⁄R+1i⁄K;

After some obvious steps (offsets are applied and time steps calcu-
lated), the program requests the control operators, to be used for
pulses later:

Lp_H=operator(spin_system,0L+0,. . .

parameters.spins_f2);

Lm_H=operator(spin_system,0L-0,. . .

parameters.spins_f2);

Lp_X=operator(spin_system,0L+0,. . .

parameters.spins_f1);

Lm_X=operator(spin_system,0L-0,. . .

parameters.spins_f1);

Lx_H=(Lp_H+Lm_H)/2; Ly_H=(Lp_H-Lm_H)/2i;

Lx_X=(Lp_X+Lm_X)/2; Ly_X=(Lp_X-Lm_X)/2i;

The initial state and the quadrature detection state are requested
in a similar way:

rho=state(spin_system,’Lz’,parameters.spins_f2);

coil=state(spin_system,’L+’,parameters.spins_f2);

When the sequence starts, a pulse is applied on the F2 nuclei:

rho=step(spin_system,Lx_H,rho,pi/2);

The coherence transfer evolution period is then run (all trajectory-
level state space restriction techniques are applied transparently
inside the evolution function, and diagnostic messages are
printed to the console):

rho=evolution(spin_system,L,[],rho,delta,1,

’final’);
A phase-cycled second pulse is applied on the F1 nuclei:

rho=step(spin_system,Lx_X,rho,pi/2)-

step(spin_system,Lx_X,rho,-pi/2)-. . .

1i⁄step(spin_system,Ly_X,rho,pi/2)+. . .

1i⁄step(spin_system,Ly_X,rho,-pi/2);

The F1 evolution period of HMQC has a refocusing 180� pulse in
the middle, and the second call to evolution informs the kernel
about that fact:

rho_stack=evolution(spin_system,L,[],rho,. . .

timestep_f1, parameters.npoints_f1-1,0. . .

refocused_trajectory0,Lx_H⁄pi);

The output of this call contains a horizontal stack of state vectors,
each specific vector corresponding to a time point in the F1 evolu-
tion period. The next pulse and the coherence transfer evolution
period are applied to the entire stack:

rho_stack=step(spin_system,Lx_X,rho_stack,pi/2);

rho_stack=evolution(spin_system,L,[],. . .rho_stack,

delta,1,0final0);

Finally, detection is performed under algebraic decoupling:

[L,rho_stack]=decouple(spin_system,L,. . .rho_stack,

parameters.spins_f1);

fid=evolution(spin_system,L,coil,rho_stack,. . .

timestep_f2, parameters.npoints_f2-1,. . .
0observable0);

The resulting FID is returned to the user. The syntax above is,
arguably, as simple and general as a spin dynamics simulation
API can get – all the complexities of relaxation theory, operator
representations in truncated basis sets, trajectory-level state space
restriction, symmetry factorization and propagation are handled
internally by the kernel, and the user is only required to spell out
the pulse sequence diagram.
6. Kernel programming and developer notes

Given the diversity of the user-land (NMR, ESR, Dynamic Nucle-
ar Polarization, Optical Magnetometry, Spin Chemistry, Optimal
Control, Quantum Computing, etc.), it is essential that the kernel
maintains a high level of generality and flexibility. This is difficult
and for this reason the authors reserve the authority over kernel
architecture and recommend placing all new functions into user-
land – whenever possible and appropriate, we will generalize
and promote them into the kernel. Researchers willing to modify
the kernel are, of course, free to do so but the official Spinach devel-
opment repository will only accept kernel changes that are univer-
sal and preserve the above noted generality.

From the overall development perspective, Spinach is an open-
source package and we do not feel protective about releasing the
source code – we view our primary contribution to be in the realm
of ideas and algorithms rather than coding. Accordingly, it is not
our intention to compete, in particular, with the established solids
NMR and ESR codes, such as SIMPSON [7,22], SPINEVOLUTION [5],
mPackages [21] and EasySpin [25] – we would much rather assist
the authors of those packages in the adaptation of the state space
restriction techniques reviewed above. Spinach has been written
with readability and portability in mind – almost every line is com-
mented and all variables have descriptive names. Complete maps
of the data structure are provided in Figs. 1 and 2 and Figs. S1–
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S4. The graphical user interface, when it arrives, will also support
all major packages.

While we do plan to eventually outsource, EasySpin style [25],
the inner loops to a compiled language and parallelize the propa-
gation and powder average stages (as recently pioneered in SIMP-
SON [7]), Spinach will continue to use Matlab for the foreseeable
future. We have two primary reasons for this choice:

A. Code acceleration achieved by employing more efficient
algorithms [26,28,29,63] is dramatically greater than the
effect of rewriting (or linking to) the existing algorithms in
a platform-specific compiled language. Accordingly, porting
to C or Fortran is not, at the moment, a high priority.

B. The cost of brain time (£25+per hour) is considerably greater
than the cost of CPU time (£0.06per hour) – Matlab’s com-
pact and elegant syntax saves the former at the (slight)
expense of the latter and is therefore optimal for our
purposes.

The current ongoing implementation effort includes spatial de-
grees of freedom, stochastic Liouville equation, solid state relaxa-
tion theories and an extended library of standard pulse sequences.

7. Conclusion

This paper should be viewed as an introduction to Version 1.0 of
Spinach. The development will, of course, continue to the best of
our knowledge and ability. In its present version Spinach offers a
mechanism for the Liouville space simulation of spin systems that
were previously too large, and significantly accelerates simulations
of previously tractable systems. The most general case of a spin
system with a dense coupling network evolving for an infinite time
remains unsolved, but this situation is rarely encountered in prac-
tice. Liouville space simulations (including symmetry, relaxation
and chemical kinetics) of most liquid-state NMR experiments on
40+ spin systems can now be performed without effort on a desk-
top workstation. Much progress has also been made with improv-
ing the efficiency of ESR, solid state NMR and Spin Chemistry
simulations.
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